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Abstract. The efficiency of a diagnosis system depends on the
relevance of the information it can retrieve from the diagnosed
plant; or, in other words, the efficiency of a sensor system can be
measured by the diagnosability degree it provides. However, the
same diagnosability level may be obtained for different sensor
configurations. Moreover, in some cases, less than the highest level
of diagnosability might be sufficient. Thus, appears the necessity to
take into account the economic issue. Following the work of [11],
this paper proposes a method to design a cost optimal sensor system
for a certain diagnosability degree using an evolutionary approach.

1 INTRODUCTION
The efficiency of a diagnosis system depends on the information it
can retrieve from the diagnosed plant. Obviously, if the information
is insufficient, the diagnosis system is not able to perform its task.
However, an increased number of sensors alone does not guarantee
that the diagnosis system will have a better performance. The
relevance of the information brought by an additional sensor must
also be taken into account. In some cases, knowing the values of a
given variable brings no information from the diagnosis point of
view. Thus, the efficiency of a sensor system can be measured by
the diagnosability degree it provides. However, the same
diagnosability level may be obtained for different sensor
configurations. Moreover, in some cases, the highest level of
diagnosability might not be necessary.

Therefore, economical issues may come into place. When
designing a sensor system, one must search for those combinations
of sensors that can provide a specified diagnosability level at lowest
possible cost. Following the work of [11], this paper proposes a
method to design a cost optimal sensor system for a certain
diagnosability degree using an evolutionary approach. Different
combinations of sensors are codified in the chromosomes of a first
population, and then a genetic algorithm searches for the most
advantageous ones in terms of diagnosability degree over cost ratio.
A practical example illustrates the method.

The paper is structured as follows: section 2 summarises an
already existing method to perform a diagnosability analysis of a
given system, introduces the objectives and formulates the problem,
section 3 presents the genetic algorithm approach to the problem,
section 4 gives an application example and section 5 outlines a few
conclusions and further directions of work.
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2 SENSOR SETS AND DIAGNOSABILITY

2.1 Analytical redundancy
The behaviour of a physical system – or its components – can be
described by a set of constraints applied to known and unknown
variables. The constraints are in fact limitations imposed to the
evolution of these variables by physical laws or other restrictions. In
a structural analysis approach, the model of the system can be
represented as a bipartite graph G = (E∪V, A), where E is the set of
constraints relating the variables in V and A is the set of arches such
that a(i,j) ∈ A iff variable vi is involved in relation ej [10].

Considering a system Σ (E, V), where E is the set of constraints -
also called primary relations (PRs) - and V is the set of variables, V
can be partitioned as V=O∪U, where O is the set of observed
(measured) variables and U the set of unknown variables. Then Σ is
said to be:

• under-determined if CARD(E) < CARD(U);
• just-determined if CARD(E) = CARD(U) and
• over-determined if CARD(E) > CARD(U).

If the system is over-determined, a perfect matching M(Em ⊂ E ,
U) can be found between the variables in U and the relations in E. A
matching M(Em , U) is said to be perfect when the bipartite graph
Gm = (Em∪U, A) does not have two arches connected by a common
relation or a common variable and the system (Em, U) is analytically
resolvable, e.g. some of the relations in Em might not be invertible.
A method to obtain such a matching is proposed in [3].

The remaining relations, those not involved in the perfect
matching are called Redundant Relations (RRs)[3]. Every RR
produces an Analytical Redundant Relation (ARR) when the
unknown variables involved in the RR are replaced by their formal
expression determined analytically by resolving the perfect
matching up to observed variables. An ARR hence arises from a
causal interpretation of the underlying model primary relations. It
only contains observed variables and can be evaluated from the
observations.

In a component-oriented model, the primary relations are
matched to the system physical components whose behaviour they
describe. The set of components whose corresponding primary
relations underlie a given ARR is called the support of the ARR and
noted Supp(ARR) [6]. In the general case, Supp(ARR) also includes
the set of sensors used to measure the variables involved in the
ARR and can be splited in a component support Comp_Supp(ARR)
and a sensor support Sens_Supp(ARR).

The ARRs obtained from a given perfect matching are called
primary ARRs.  Additional combined ARRs can be obtained by
substituting the expression derived from one ARR for a variable in



another ARR. The combined ARRs inherit the component supports
of their ascendant ARRs, while the sensor support is constructed
from the sensors used to measure the variables involved in the
newly obtained ARR [6].

However, there is one issue that concerns the conditions under
which a variable substitution can be actually performed. A given
relation (primary or not) can be interpreted in a causal way, i.e. for
determining one or the other of the involved variables. The possible
causal interpretations may be submitted to validity conditions
depending on the corresponding mathematic analytical form. For
example, the relation x=y×z has two additional possible
interpretations : y=x/z under validity condition z≠0, and z=x/y under
validity condition y≠0. Every relation hence gives rise to a set of
causal-relations with their associated validity conditions. Each final
ARR will also inherit the evantual validity conditions of its
ascendant relations.

2.2 Component-oriented Fault Signature (FS)
matrix
In the FDI terminology, the fault signature (FS) matrix crosses
ARRs in rows and (sets of) faults in columns [5]. Let us assume that
Fj denotes a fault on component Cj, then in this matrix, the
interpretation of some entry sij being 0 is that component Cj does
not belong to Supp(ARRi), i.e. the occurrence of the fault Fj does
not affect ARRi, meaning that ARRi is satisfied in the presence of
that fault. sij = 1 means that Cj belongs to Supp(ARRi), i.e. if
detected, fault Fj will affect ARRi. The columns of such a matrix
are the fault signatures. Two faults with identical signatures are said
to be non-discriminable.

Example 1:

Figure 1. A simple example

Let’s consider the system in figure 1 containing an adder (A) and
an inverter (I): Σ, with V = {x, y, z}. S(i) will denote the sensor
measuring the values of variable i. The set E of primary relations is:

PR1: z = x + y, describing the behaviour of component A
PR2: y = -z, describing the behaviour of component I

In the case that O = {x} and U = {y, z} Σ is just-determined. No
ARRs can be found since no redundancy exists. Let’s consider now
that O = {x, z} and U = {y}. Σ becomes over-determined and an
ARR appears: ARR3: x = 2z with Comp_Supp = {A, I} and
Sens_Supp = {S(x), S(z)}. ARR3 inherits the component supports of
its ascendant relations. The FS matrix in this case is:

Table 1.  The FS matrix with y unmeasured.

With this system instrumentation (adder, inverter and the two
sensors S(x) and S(z)) at an eventual detection of a fault it is
impossible to discriminate between the four component faults. Now,
by adding a new sensor for y all the variables are measured - O =

{x, y, z} and U = ∅ - so the primary relations will become actually
ARRs themselves. The FS matrix in this case is:

Table 2. The FS matrix with all variables measured.

In this system instrumentation the sets that can be discriminated
are {A, S(x)}, I and {S(y), S(z)}.

It is easy to see that the discriminability level of the system
grows with the number of ARRs. Since an ARR contains
exclusively measured variables, increasing the number of ARRs is
achieved by increasing the number of sensors. Obviously, the
maximum discriminability level is obtained when all the variables
in the set V are measured.

2.3 Optimal sensor sets for diagnosability
A definition of the concept of diagnosability can be found in [4]: “A
system is diagnosable with a given set of sensors S if and only if (i)
for any relevant combination of sensor readings there is only one
minimal diagnosis candidate and (ii) all faults of the system belong
to a candidate diagnosis for some sensor readings”.

The first condition ensures that there are no two identical
columns in the system’s FS matrix and the second that the FS
matrix doesn’t contains void columns, case in which the system is
fully diagnosable. However, in practice, this situation is seldom
encountered. Most physical systems are only partially diagnosable
as several faults share the same signature. Given a system Σ and a
set of faults F, a subset F’⊂F of non-discriminable faults is called a
D-class [11]. The number of D-classes of a fully diagnosable
system is equal to the number of faults, CARD(F). The faults are
assumed to be detectable.

The method is based on assuming that all the unknown
(measurable) variables have a hypothetical sensor and producing the
corresponding hypothetical ARRs (H-ARRs). The corresponding
FS matrix is called Hypothetical Fault Signature (HFS) Matrix [11].
This matrix has several fields, each corresponding to H-ARR
attributes – component and sensor supports, causal interpretations,
validity condition, etc. – that are traced along the combinations. It
hence summarises all the required information to perform a
complete diagnosability assessment. The HFS matrix can easily be
obtained from the H-ARRs matrix by removing all fields but the
component support and the sensor support fields, complemented by
the corresponding validity condition field.  Let us note with S* the
set of sensors associated to all measurable variables in a given
system Σ. Then S* can be written as S* = Sa∪Sh, where Sa is the set
of already available sensors and Sh is the set of hypothetical
sensors. If the method is implemented in the phase of design Sa =
∅.

Definition  1. (Alternative Fault Signature Matrices).  Given a
system Σ with a set of sensors S⊆S*, its FS matrix is obtained from
the HFS matrix by removing all the columns corresponding to
hypothetical sensors not included in S and all the H-ARRs whose
sensor supports do not intersect S. The Alternative Fault Signature
(AFS) Matrices are given by all the FS matrices corresponding to
all the possible sensor sets S⊆P(S*), where P(S*) are the parts of
S*.

Obviously, the most suitable combination of hypothetical
sensors with respect to fault diagnosis is the one whose AFS matrix
provides the same number of D-classes as the HFS matrix and, in
the same time, is of minimal cost. However, when evaluating the



number of D-classes, one must not allow to a hypothetical sensor to
alter this number. A combination of hypothetical sensors with
different fault signatures may generate an AFS matrix with a fairly
large number of D-classes without improving the discriminability
between the system components. So, the number of D-classes given
by an AFS matrix must be evaluated without considering the
columns corresponding to hypothetical sensors. On the other hand,
each newly added sensor will introduce a new possible fault in the
system: itself. This can be penalised by taking into account the
reliability specifications of each sensor when evaluating the cost of
a hypothetical sensor set.

Considering the above, we propose the following formula for
evaluating the efficiency – with respect to fault diagnosis - of a set S
= {S1, ..., Sn}⊂Sh of hypothetical sensors:
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where D is the number of D-classes evaluated as already explained
and Ci, i = 1, ..., n, are the costs of the sensors in the set S. The costs
are evaluated as Ci = Pi + Ii – Ri, where Pi is the price of the sensor,
Ii measures the ease of installation and/or replacement of the sensor
and Ri is its reliability specified by the provider.

So, finding the optimal sensor configuration w.r.t. fault diagnosis
means to set D at Dmax and to look for the most cost effective
hypothetical sensor sets (i.e. to maximise ε), where Dmax is the
number of D-classes given by the HFS matrix.

3 GENETIC ALGORITHM
In order to find the most suitable combination of additional sensors
that provides a system with the maximum level of diagnosability
one must compare the discriminability level (number of D-classes)
and the cost effectivenes of 2n AFS matrices, where n is the number
of hypothetical sensors. In the case of complex systems, with a
large number of measurable variables this can be time consuming.
On the other hand, finding the most efficient sensor set w.r.t. fault
diagnosis can actually be formulated as an optimisation problem
with ε as objective function. So path-oriented global optimization
methods present themselves as a faster alternative to an exhaustive
search. However, the same (optimal) value of ε may result from
different combinations of hypothetical sensors. The genetic
algorithms have the capacity to evolve to a final population that can
store different individuals with the same fitness value, namely the
optimal solution to the problem.

Such and algorithm starts from an initial set of candidate
individuals called the initial population and, using genetic operators
– crossover, mutation, selection - which try to mimic natural
selection laws, simulates the biological evolution producing new
populations with better individuals at each iterative step. After a
number of iterations, which depends on the complexity of the
problem, the algorithm finds the optimal solution to the problem as
the best fit individual [8].

Every individual is uniquely identified by a code called
chromosome which is mapped to a certain value of the objective
function (the function to optimise) representing the fitness of the
individual. With the objective to improve the fitness of the
individuals at each step, the algorithm uses the genetic operators to
generate new individuals and to select the fittest ones. The
crossover operator combines the information of two different
chromosomes to generate a new individual, whilst the mutation
operator generates new individuals by randomly altering the
information in one chromosome. The selection operator chooses the
individuals which survive to the next generation [7][1].

The following picture illustrates the main steps of a simple
genetic algorithm:

Figure 2. Basic genetic algorithm

In our case, the individuals of the initial population are binary
codified hypothetical sensor sets: the optimal sensor combination
candidates. The mapping between the candidates and the objective
function ε is done through the AFS matrix generated by each
candidate. For example, let’s consider that a given system Σ has the
following set of unmeasured variables: U = {x, y, z}. Then the
chromosome [1 0 1] will be the code for the set  Sh = [1 0 1] × [S(x)
S(y) S(z)]T = {S(x), S(z)} of hypothetical sensors.  The fitness of this
chromosome is evaluated as ε = D/(Cx + Cz), where D is the
number of D-classes given by the corresponding AFS matrix
constructed as indicated in definition 1.

Example 2:

HFS matrix 11010  AFS 11010 11010
    10110  matrices 10100 10110
    01110 01110 01110

10111 10101 10111
10101 11101 10101

Chromosomes     111     101     110

The first two columns correspond to the component support and
the last three to the sensor support. The digits marked in bold
characters are eliminated from the HFS matrix, constructing the
corresponding AFS matrices.

The crossover and mutation operators are implemented in the
simple way of [8]. To illustrate the behaviour of the crossover
operator let’s note the male chromosome as m = [m1, ... ,mi, ... ,ms],
the female chromosome as  f = [f1, ... ,fi, ... ,fs], where s =
CARD(Sh).  Crossover randomly selects two individuals of the
current population, then randomly generates a crossover point (cp)
in the interval [1, s]. Then it mixes the genetic information between
the two, generating two offsprings as follows: child1 = [m1,.... , mcp,
fcp+1, ... , fs] and child2 = [f1,.... , fcp, mcp+1, ... , ms]. This mechanism
is called one point crossover. The mutation operator also randomly
generates a mutating point (mp) in the interval [1, s] and switches
the binary value of the mp bit of the original chromosome.

The selection operator uses the q-tournament mechanism. There
are several selection mechanisms, a complete description of which

(1)



can be found in [7]. Tournament selection randomly chooses q
individuals from the current population, evaluates them, and passes
the fittest one to the next generation. Here q = 2 was used, the so-
called binary tournament.

The main steps of the algorithm are given below:
Step 1 (optional): in case of very large HFS matrices, the

algorithm starts with a refining step consisting in evaluating one by
one all hypothetical sensors and eliminating the ones that do not
increase the diagnosability degree given by the already available
sensors. Let us note with s the number of remaining sensors.

Step 2: the initial population is generated by constructing the set

of )2/int(s
sC  from the remaining sensors. This results in the

maximum number of possible combinations, which will guarantee a
more robust search. Example: if s=7 than the initial population is
formed of all possible combinations of binary vectors with 7
elements, 3 of which are 1 and the rest of 4 are 0. However, if the
number of hypothetical sensors is very large, for computational
reasons, the population should be truncated to a number between 50
to 200 individuals [1].

Step 3: running the algorithm.
• Step 3.1. evaluation: the fitness values of all individuals

in the population are calculated.
• Step 3.2. elitism:  the best fit individuals are just passed

to the next generation.
• Step 3.3. crossover: from the rest of the population two

individuals are randomly selected and their genetic
information is mixed as described above, generating
new individuals. The operation is repeated until there
are no more individuals left.

• Step 3.4. mutation: one of each two offsprings has a
gene switched.

• Step 3.5. selection (binary tournament): two individuals
are randomly selected and the fittest one is passed to the
next generation. The operation is repeated as many
times is necessary to complete the new generation.

• Step 3.6. Replace the old generation with the new one
and go to Step 3.1.

Stop condition: when the difference between the most fit and
less fit value of the current population is smaller or equal to a value
set according to the application.

4 APPLICATION TO DAMADICS BENCHMARK
The benchmark actuator selected is a final control element or
simply named actuator, which interacts with the controlled process.
These actuators are used in the evaporation station of a sugar
factory in Poland [2][12]. The set-point of the position actuator is
the output of the process controller (flow or level controller) and the
actuator modifies the position of the valve allowing a direct effect
on the primary variable in order to follow the flow or pressure set
point. In this example, it is used to control the flow on the valve
outlet (F).

The actuator consists in three main components (figure 3):
• control valve or hydraulic (H)
• pneumatic servo-motor or mechanics (M)
• positioner, which in turn can be divided in three sub-

components:
• position controller (PC)
• electro/pneumatic transducer (E/P) with pressure supplier

(PSP)
• displacement transducer – or positioner feedback – (DT)

Control valve is the mean used to prevent, allow and/or limit the
flow of fluids through control systems. Changing the state of the
control valve is accomplished by a servomotor.

A  pneumatic servomotor can be defined as a compressible (air)
fluid powered device in which the fluid acts upon the flexible
diaphragm, to provide linear motion of the servomotor stem.

Positioner is a device applied to eliminate the control-valve-stem
miss-positions produced by the external or internal sources such as
friction, pressure unbalance, hydrodynamic forces etc. It consists in
an inner loop with a P controller of a cascade control structure,
including the output signal of the outer loop of the flow or level
controller and the inner loop of the position controller.
• Additional external components:

V1, V2 - cut-off valves
V3 - by-pass valve
PT - pressure transmitters
FT - volume flow rate transmitter
TT - temperature transmitter

Figure3. Actuator scheme

The set V of system variables is:
• X - servomotor’s rod displacement
• PV - process variable
• Fv - volumetric flow on the valve outlet
• Ps - the pressure in the servomotor’s chamber
• Pz - the supply pressure (600 MPa)
• SP - the set point
• CVI - the control current (controller’s output)
• ∆P - pressure difference across the valve (P1 – P2)

The following table summaries the equation for each component:

Table 3. The component-oriented primary relations of the process
Component Equation Invertible Validit

y cond.
Pneumatic
servomotor

X= r1(Ps, ∆P) Not none

Control valve Fv = r2(X, ∆P) in respect of
X

∆P ≠ 0

Position controller CVI = r3(SP, PV) in respect of
PV

none

E/P transducer +
pressure supplier

Ps = r4(X, CVI, Pz) Not none

Positioner
feedback

PV = r5(X) in respect of
X

none

Following the ideas presented in the section 3 the goal is to
design an instrumentation system that will optimise the
diagnosability level of the system. The components that can be
faulty are: {M, P, H, DT} and the hypothetical sensors Sh = {S(x),
S(Ps), S(Fv), S(CVI), S(PV), S(dP), S(Pz)}. Ideally, the
discriminability level of the system should be 4 as the number of
possible faulty components.



Considering all the variables in V measured, the number of H-
ARRs is 44. This simple example was chosen in order to compare
the results obtained with the genetic algorithm with those obtained
with an exhaustive search. With an initial population of 35
individuals calculated with the formula given in Step 2 in the
previous section the genetic algorithm converges to the same
solution as the one obtained with the exhaustive search in 5, 6
iterations. This means it has to evaluate 175 or 210 combinations of
sensors, a value bigger than 27 which is the number of sensor
combinations evaluated in an exaustive search. However, if the
initial population is truncated to 15 the same result is obtained in the
same number of generations, sensible faster than with an exhaustive
search. It seems that in cases with larger HFS matrixes the
discrepancy between the time needed by the genetic algorithm to
converge and the time needed to scan all the matrix in an exhaustive
search will increase.

Table 4. The optimal sensor set.

5 CONCLUSIONS AND FUTURE WORK
The analytical redundancies existing in an industrial system provide
means to discriminate between its functional components in the
eventuality of a fault. The number of such redundancies depends of
the availability of measured variables. Thus, increasing the number
of sensors will increase de level of discriminability between system
components. Here was proposed a method to search for an optimal
(cost wise) set of sensors that can be implemented in the stage of
instrumentation system design.

The genetic algorithm used encountered the optimal additional
sensor set in a fairly small number of iterations showing itself as a
good way to avoid an exhaustive search. For the future remains to
test the approach with more complicated examples with larger HFS
matrices. Another issue still under study is the possibility to
incorporate in the procedure a method to take into account the
eventual conflicts between the validity conditions under which the
resulting ARRs can be evaluated.
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